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You've Heard Of These Before

Functional Testing
Load Testing
Integration Testing
User Testing
Smoke Testing
Sanity Testing
Blind Testing
Whitebox Testing
Blackbox Testing
Unit Testing

End to End Testing
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Just because there is a name for it,
doesn’t mean it exists
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So, how?



You should choose

which testings to focus

on based on your
acceptable risks ke poriosi o

on an e-commerce
website



You should choose

which testings to focus

on based on the

nature of your End-to-end testings

with your third party

application agencies
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People Who Define The Application and Its
Acceptable Risks

Target Users Stakeholders

Development Team



How to guarantee the quality of tests

Designing (good) tests are hard!



Tests check that
expectations are met

v



Tests alert when
expectations are not

met



Know What You Are Testing



More Doesn’'t Mean Better

it(

URLSearchParamsPolyfill.mockImplementation(() => mockGetNull)
propsWithFalseTermsOfUse = {
.« props

}
wrapper = shallow(<Login {...propsWithFalseTermsOfUse} />)

expect(wrapper.update().state( ) ) .toBe(
})
it(

URLSearchParamsPolyfill.mockImplementation(() => mockGetNull)
- propsWithFalseTermsOfUse = {
.« props

}
wrapper = shallow(<Login {...propsWithFalseTermsOfUse} />)

expect(wrapper.update().state(ModalType. | )).toBe(
})




Because...Sometimes They Are The Same

ModalType {




Write Tests Before Development
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Verify Your Tests Do Something



@Test
public void sumOfOneAndThreeShouldBeFour() throws Exception {

int result = new Calculator().sum(1,3);

assertEquals(4, result)




public class Calculator {

public int sum(int a, int b) {

return 4;

https://jeroenmols.com/bloa/2017/11/28/coveragproblem/




Test

function test_sum(inputl, input2) {
assert(sum(1, 3) 4)
assert(sum(o, 0.0) 0)

assert(sum(-1, 0) -1)
assert(sum(1l, -100.0) -99)




Good tests should break when things fail



One more thing..

Don't trust code coverage tools

They are a source of information,
not a source of quality.
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