How Much Testing Is
Enough Testing

Samantha Wong
GovTech
STACK 2020 - Dec 2020

You've Heard Of These Before

Functional Testing
Load Testing
Integration Testing
User Testing
Smoke Testing
Sanity Testing
Blind Testing
Whitebox Testing
Blackbox Testing
Unit Testing

End to End Testing

N 20 20 2 2 2 2 2

Just because there is a name for it,
doesn’t mean it exists

Product/Application Testing

Functional Non-Functional
User Unit Integration End-To-End Security Performance Deployment
!_‘—\ | | | |
Feedback Acceptance Use Case Snap Shot Soak Load |Sl‘755
Design Usability Data Network
Component Service
; il API -to- -to-
Adaptiveness Compatibility)
| l Component Service White-Box Black-Box Platform Configuration
Accessibility ~ Compliance [—I_‘
Components Static Dynamic Blue-Green
’—‘_‘—‘ Port Scanning
Code Analysis
Functions Classes Repositories Code Execution
,—, |_| Attack Surface Posture
Front-End Back-End

Iterating Through Attack Vectors

Middle-Ware

So, how?

You should choose

which testings to focus

on based on your
acceptable risks ke poriosi o

on an e-commerce
website

You should choose

which testings to focus

on based on the

nature of your End-to-end testings

with your third party

application agencies

Product/Application Testing |

Functional Non-Functional

User Unit Integration End-To-End Security \ VPerformance Deployment

|
[_'ﬁ l |
Soak Load Stress

Feedback Acceptance Use Case Snap Shot I_'
Usability Data | Network |

Component Service
: p— API -to- -to-
Adaptiveness Compatibility 3
- ! Component Service . .
| | White-Box | | Black-Box | | Platform || Configuration |
Accessibilty T
Components ‘ Static \ Dynamic Blue-Green
l_i ‘ l | Port Scanning
Code Analysis |
‘ : Code Execution
Functions = Classes Repositories ;
| Attack Surface Posture
Front-End Back-End

\ lterating Through Attack Vectors ‘

Middle-Ware

Product/Application Testing |

Functional Non-Functional
User Unit Integration End-To-End Security Performance Deployment
I
Usability Data Network
I—| Component Service I_—|
: " API -to- -to-
Adaptiveness Compatibility A
| | Component Service White-Box Black-Box Platform Configuration
Accessibility Compliance r—l_‘ |—|
Components Static Dynamic Blue-Green
I_’ | Port Scanning
I Code Analysis s ;
Functions Classes Repositories Ode. Execuiion
Attack Surface Posture
Front-End Back-End

Middle-Ware

lterating Through Attack Vectors

Product/Application Testing ‘

Functional Non-Functional
User Unit Integration End-To-End Security Performance Deployment
] —— 7]
Feedback Acceptance Use Case Snap Shot Soak Load ’ifss
Design Usability Data Network
[—I |—| Component Service I_—I
: i API -to- -to-
Adaptiveness Compatibility X
| | Component Service White-Box BlackBos Platform Configuration
Accessibility ~ Compliance —L L |‘—l
Components Static Dynamic Blue-Green
’_{ Port Scanning
1 Code Analysis Code £ ;
Functions Classes Repositories SassEXcCon
Attack Surface Posture
Front-End Back-End

Middle-Ware

Iterating Through Attack Vectors

People Who Define The Application and Its
Acceptable Risks

Target Users Stakeholders

Development Team

How to guarantee the quality of tests

Designing (good) tests are hard!

Tests check that
expectations are met

v

Tests alert when
expectations are not

met

Know What You Are Testing

More Doesn’'t Mean Better

it(

URLSearchParamsPolyfill.mockImplementation(() => mockGetNull)
propsWithFalseTermsOfUse = {
.« props

}
wrapper = shallow(<Login {...propsWithFalseTermsOfUse} />)

expect(wrapper.update().state()) .toBe(
})
it(

URLSearchParamsPolyfill.mockImplementation(() => mockGetNull)
- propsWithFalseTermsOfUse = {
.« props

}
wrapper = shallow(<Login {...propsWithFalseTermsOfUse} />)

expect(wrapper.update().state(ModalType. |)).toBe(
})

Because...Sometimes They Are The Same

ModalType {

Write Tests Before Development

Stuff | know
| know

~

Stuff | know
| don’t know

~

Y

(&

Stuff | didn’t
know | know

%
<

Y

J

The Spheres of Knowing

Stuff | didn’t
know | didn’t
know

%
<

)

Verify Your Tests Do Something

@Test
public void sumOfOneAndThreeShouldBeFour() throws Exception {

int result = new Calculator().sum(1,3);

assertEquals(4, result)

public class Calculator {

public int sum(int a, int b) {

return 4;

https://jeroenmols.com/bloa/2017/11/28/coveragproblem/

Test

function test_sum(inputl, input2) {
assert(sum(1, 3) 4)
assert(sum(o, 0.0) 0)

assert(sum(-1, 0) -1)
assert(sum(1l, -100.0) -99)

Good tests should break when things fail

One more thing..

Don't trust code coverage tools

They are a source of information,
not a source of quality.

End Slide

